L-selectin-mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events.
نویسندگان
چکیده
L-selectin-mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments, which supports the interpretation that L-selectin-mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin-mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the time scale of 10(-1) seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10(4) Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first-order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin, and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.
منابع مشابه
Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selec...
متن کاملL-selectin dimerization enhances tether formation to properly spaced ligand.
Selectin counterreceptors are glycoprotein scaffolds bearing multiple carbohydrate ligands with exceptional ability to tether flowing cells under disruptive shear forces. Bond clusters may facilitate formation and stabilization of selectin tethers. L-selectin ligation has been shown to enhance L-selectin rolling on endothelial surfaces. We now report that monoclonal antibodies-induced L-selecti...
متن کاملThe transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow.
During inflammation and immune surveillance, initial contacts (tethering) between free-flowing leukocytes and the endothelium are vitally dependent on the presentation of the adhesion receptor L-selectin on leukocyte microvilli. Determinants that regulate receptor targeting to microvilli are, however, largely elusive. Therefore, we systematically swapped the extracellular (EC), transmembrane (T...
متن کاملFlow-enhanced adhesion regulated by a selectin interdomain hinge
L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin-ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kin...
متن کاملSialylated, fucosylated ligands for L-selectin expressed on leukocytes mediate tethering and rolling adhesions in physiologic flow conditions
Interaction of leukocytes in flow with adherent leukocytes may contribute to their accumulation at sites of inflammation. Using L-selectin immobilized in a flow chamber, a model system that mimics presentation of L-selectin by adherent leukocytes, we characterize ligands for L-selectin on leukocytes and show that they mediate tethering and rolling in shear flow. We demonstrate the presence of L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 18 شماره
صفحات -
تاریخ انتشار 2004